

HJT Photovoltaic Module 425W-455W

Model: HJT-PV Power: 425W-455W

Summary

Assembled with 11BB PERC cells, the half-cell configuration of the modules offers the advantages of higher power output, better temperature-dependent performance, reduced shading effect on the energy generation, lower risk of hot spot, as well as enhanced tolerance for mechanical loading.

HJT Photovoltaic Module 425W-455W (HJT-PV)

Product Features

Higher Output Power

HPhotovoltaic panels generate more electricity, enhancing overall system efficiency to meet increased energy demands across diverse applications

Lower Levelized Cost of Energy (LCOE)

By reducing production and maintenance expenses, the economic viability of solar systems improves, making energy costs more competitive and accessible

Less Shading and Lower Resistive Loss

Optimized designs minimize the impact of shading on power output and reduce internal resistance, ensuring efficient energy transmission and better overall performance

Better Mechanical Loading Tolerance

Robust panel structures can withstand various environmental stresses, such as wind and snow loads, thereby extending the lifespan and reliability of the photovoltaic systems

Technical Parameters

Product Parameters

Electrical Characteristics											
Model Number	HJ-425M	НЈ-430М	HJ-435M	НЈ-440М	НЈ-445М	НЈ-450М	НЈ-455М				
Testing Conditio n	STC										
Maximu m Power (Pmax/ W)	425	430	435	440	445	450	455				
Open Circuit Voltage (Voc/V)	48.3	48.5	48.7	48.9	49.1	49.3	49.5				
Short Circuit C urrent(I sc/A)	11.23	11.31	11.39	11.46	11.53	11.6	11.66				
Voltage at Maxi mum Power (Vmp/V)	40.5	40.7	40.9	41.1	41.3	41.5	41.7				
Current at Maxi mum Po wer(Imp /A)	10.5	10.57	10.64	10.71	10.78	10.85	10.92				
Module	19.6	19.8	20	20.2	20.5	20.7	20.9				

Efficienc y(%)												
STC (Standard Testing Conditions): Irradiance 1000W/m², Cell Temperature25 °C, Spectra atAM1.5												

Application

Residential rooftop solar systems Commercial buildings for sustainable energy integration Industrial facilities looking to offset electricity costs Off-grid applications in remote locations requiring reliable power

Contact Us

For catalog requests, pricing, or partnerships, please visit: https://www.highjoule.com

